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Abstract 
 

This project assessed the accuracy with which a formation of satellites, the Laser 
Interferometer Space Antenna (LISA), must be placed into orbit.  The LISA formation will 
consist of three satellites orbiting the Sun, forming an equilateral triangle. 
 The first phase dealt with the formation parameters (leg length, leg length time rate of 
change, interior leg angle, and formation-sun-earth angle) as a function of time.  Duplication of 
plots contained in other papers on the topic validated the output of the analysis code.  
Preliminary analysis indicated the values of each parameter varied sinusoidally, and increasing 
the initial error conditions tended to reduce the time each parameter fell within the acceptable 
tolerance values. 
 The second phase dealt with analyzing formation parameters as a function of the error 
size of specific initial conditions. Two of the eighteen state variables were varied simultaneously, 
resulting in a surface plot indicating how long a particular formation parameter was out of 
specification over the lifetime of the mission.  The formation was most sensitive to velocity 
errors in the in-track direction.  Furthermore, it appeared that one error can counter-act another 
error, agreeing with other papers on this topic. 
 The third phase analyzed the effect of varying all eighteen variables simultaneously.  A 
plot was created to show how the value of time out of specification for the leg length rate of 
change changes as the initial state variable tolerance changes.  As the maximum variation in 
position and velocity errors increased, there was a corresponding increase in the amount of time 
the formation parameter was out of specification.  A cross-section of the surface was created 
with position error range remaining constant while varying velocity error range.  With an 
assumed maximum position error of zero, the formation tended to start going out of specification 
at a velocity error magnitude of ±2.6 cm/sec. 
KEYWORDS: LISA, satellite, formation, insertion error
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Overview 
This project assessed the accuracy with which a particular constellation of satellites, the 

Laser Interferometer Space Antenna (LISA), must be placed into orbit in order to enter into and 

maintain formation over the life of the mission. 

 The success of this mission depends heavily on the ability to place the satellites in their 

proper orbits.  Slight errors in the orbital insertion become larger over time, and reduce the life of 

the mission.  Due to the current proposed construction of the spacecraft, mid-life orbit 

corrections are unlikely to be available, further emphasizing the necessity of the accurate 

placement of the satellites into the correct orbit. 

 By performing a detailed analysis of the effects of errors on formation parameters over 

time, this project can effectively tell the LISA design team the allowable tolerance in initial 

conditions to achieve the desired performance of the formation parameters over the life of the 

LISA mission. 

Background 

Gravitational Waves 

 Introductory physics courses discuss electromagnetic (EM) waves that travel in one 

direction with a sinusoidal electric field and magnetic field perpendicular to the direction of 

propagation and to each other.  These are generated by the acceleration of charged particles and 

are the means for wireless communications.  The waves create signals in antennas through the 

process of induction, providing an easy method of detection.  Gravitational waves, on the other 

hand, come from the acceleration of mass.  Predicted by Einstein, these waves are yet to be 
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directly detected.  In 1993, Drs. Russell Hulse and Joseph Taylor indirectly found evidence of 

their existence through measurements of a binary star system.1 

 Gravitational waves affect space as they travel, causing contractions and expansions.  

Two masses set apart at a given distance would have the distance between them changed without 

moving as a gravity wave passes between them.  So theoretically, detection of gravitational 

waves would be possible if the precise distance between two masses with no relative motion 

between each other is continuously measured with an accurate ruler2. 

 Currently there are several projects attempting to detect these waves, including the Laser 

Interferometer Gravitational-Wave Observatory (LIGO), TAMA (a Japanese detector), the 

proposed LISA project, and others.  In most cases the projects use interferometers as the basis for 

detection. 

Interferometers  

Interferometers operate based on the principle of constructive and destructive 

interference.  Two waves in phase with each other will have constructive interference and appear 

stronger than either when added together, while two waves out of phase with each other will 

                                                 
1 Faye Flam, “Physics: A Prize for Patient Listening.” Science 262 No. 5133 (1993): 507-508 

Figure 1. A Michelson Interferometer3 
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have destructive interference and appear weaker than either when combined.  Figure 1

a diagram of a typical interferometer setup. The first box shows light coming from a source and 

being split by a mirror into two legs.  Boxes 2 and 3 show each leg being traversed and the lig

returning to a photo detector.  When comparing the legs, constructive interference appears as 

bright spots while destructive interference appears as dark spots. 

 Given an interferometer with known distances between the legs, the interference pattern

can be used to calculate the wavelength of the type of wave being examined.  Likewise, a w

 provides 

ht 

 

ave 

very precisely through 

Doppler shif nges in the interference pattern. 

                                                                           

of a specific wavelength can be used to measure changes in distance 

t and phase variation of the wave causing visible cha

Figure 2. A Diagram of the Classical Orbital Elements4 

                                                                                  
2  Peter Saulson, “If light waves are stretched by gravitational waves, how can we use light as a ruler to detect 
gravitational waves?” American Journal of Physics 65, no. 6 (1997): 501-505. 
3 “How LISA Works” n.d., <http://lisa.nasa.gov/TECHNOLOGY/LISA_interfer.html> (19APR2007) 
4 Kim Dismukes, “Orbital Elements.” 2002.  <http://spaceflight.nasa.gov/realdata/elements/graphs.html> 
(19APR2007) 
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Satellites 

 The first man-made object to orbit the Earth, Sputnik, signaled the beginning of serious 

space operations.  Many types of satellites were quickly developed including 

telecommunications, remote sensing, and exploration. 

 All types of satellites orbit in the 

described on a ba

laws: the Earth orbits the Sun in an ellipse 

Table 1. Equations for the Classical Orbital Elements5 

same way: they fall towards the object about 

which they orbit, and miss it; they are in 

constant motion.  This motion can be 

sic level by using Kepler’s 

with the Sun at one focus, a line connecting 

the Earth and the Sun will sweep out equal 

areas in equal time intervals, and the square 

of the orbital period is proportional to the 

cube of the major axis of the orbit. 

 Six elements are needed to determine 

particular orbits, as seen in Figure 2, with associated equations in Table 1.  These Classical 

Orbital Elements (COEs) describe the basic components of the orbit, where µ  is a constant 

called the gravita

Orbital 
Element Equation 

Semi-major 
Axis ε

µ
2
−

=a  

Eccentricity ( )21e
r
µ

µ
  = − − ⋅    

v r r v v  

Inclination 





 ⋅

= −

h
i Kh1cos  

Longitude of 
Ascending 

Node 






 ⋅

=Ω −

n
In1cos  

Argument of 
Periapsis 






 ⋅

= −

ne
en1cosω  

True Anomaly 1cos
er

ν − ⋅ =  
 

e r  

ε  is the specific mechanical energy of the satellite.  The 

mi-mse ajor axis defines the size of the orbit, the eccentricity defines how circular the orbit is, 

and the inclination defines how the orbit is oriented with relation to the body being orbited.  The 

longitude of ascending node indicates where the orbit crosses the equatorial plane of the object 

tional parameter, and 
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being orbited, the argument of periapsis is the closest point between the orbit and the object 

being orbited, and the true anomaly defines where the satellite currently is along the orbit. 

 There are special cases of orbits where one or more of the terms must be changed (such 

as circular orbits), however none of those apply to this project.  These orbital elements can be 

calculated from position vector and velocity vector data (r and v), which can be determined 

through the analysis of azimuth, elevation, range, and the time derivative of each.  The azimuth, 

objects in Ea spheric drag, irregular gravity 

fields due to a non-spherical, non-  the spacecraft, solar wind, 

                                                                            

objects in Ea spheric drag, irregular gravity 

fields due to a non-spherical, non-  the spacecraft, solar wind, 

                                                                            

elevation, range and rate of change of each come from a tracking system.  They are given in the 

topocentric (location centered) horizon coordinate system as seen in Figure 3. 

 Actual orbits vary with time.  Environmental perturbations cause these variations.  For tal perturbations cause these variations.  For 

rth orbit, perturbations include such things as atmo

homogeneous Earth, out-gassing of

                                                                                

rth orbit, perturbations include such things as atmo

homogeneous Earth, out-gassing of

                                                                                
amentals of Astrodynamics and Applications.  New York: McGraw-Hill, (19

Figure 3. The Topocentric Horizon Coordinate System 

 
5 David Vallado, Fund 97): 130. 
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solar radiation, the influence of third bodies such as Jupiter, and many others.  When 

determining where a satellite will be at a given time, all factors must be included in the 

calculations or the answer will not be accurate.  Furthermore, measurement instruments all have 

inherent errors.  Radar must travel through the atmosphere which can affect the wave’s velocity 

and path.  There is a measurable time delay between when the radar wave is transmitted and 

received.  The radar equipment may be slightly mis-calibrated.  Thus, orbits always change 

slightly, and there is some amount of error present in all operations.  Even planning orbits 

introduces some amount of uncertainty, as the propagator, the software package used to predict 

the orbit, may not include nor model in the same manner all perturbations that will affect the 

system, and the finite precision of computers produces some rounding errors. 

Orbit Propagation and Analysis 

 Orbit propagation involves the prediction of where a satellite will be at a future point in 

e conditions can come in a variety of ways: orbital 

lemen

 (1), and integrates it over some specified period of time.  In an ideal case, this would 

ean t

time given a set of current conditions.  Thes

e ts, position and velocity vectors, or azimuth, elevation, range and associated time rates of 

change. 

 A propagator takes the differential equation of motion for a two-body system given by 

Equation

m hat only true anomaly, ν , changes.   

µ
+ =  3r

r r 0  (1) 

Thus, given a new value for ν  the old values for the rest of the COEs can be used to calculate 

new r and v.  Unfortunately, perturbations cause other orbital elements to vary with time. 
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 Propagators used to design actual orbits take into account perturbations when

calculating a position based on data, and the accuracy depends on how precise

 

ly the 

erturb

have a calculable affect on the other 

ompo       

e can be calculated.  From this, the 

p ations have been implemented in the program.  This means that the accuracy of the 

propagator results will decrease as it calculates further and further into the future. 

 So long as unaccounted external forces do not interact with objects in orbit, variations in 

one component of the position and velocity vectors will 

c nents.  For example, assume a satellite has a known position <x, y, z> and velocity  

<u, v, w>.  This information allows an orbit to be predicted.  If a micro-meteorite hits the 

satellite and changes the value of u slightly, all other later values for x, y, z, v, and w will be 

different than what the initial orbit design would predict.   

 By varying the initial state of every variable and propagating over the design life of a 

mission, the effect of insertion errors on an orbit over tim

insertion accuracy can be determined based on the required tolerance of the orbit.  Analyzing a 

large number of simulated orbits whose parameters are bounded by known error is termed a 

Monte-Carlo method: the use of a sufficiently large base of statistical data on a system allows the 

system to be numerically modeled.  This is a much simpler method for modeling a complex 

system than analytically deriving exact solutions. 
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Analysis 

A project will place three satellites in orbit around the Sun as seen in Figure 4.  

The formation will trail the Earth by about 20° as measured by the formation-sun-earth angle, 

and orbit in the shape of  five million kilometers.  

Within each satellite will be a test mass free of 

e some natural oscillation of the leg-

ct will place three satellites in orbit around the Sun as seen in Figure 4.  

The formation will trail the Earth by about 20° as measured by the formation-sun-earth angle, 

and orbit in the shape of  five million kilometers.  

Within each satellite will be a test mass free of 

e some natural oscillation of the leg-

 The LIS

 an equilateral triangle with leg lengths of an equilateral triangle with leg lengths of

Figure 4. The LISA Formation in Orbi

external forces.  Each leg will be connected by a 

laser, forming a Michelson interferometer shown in 

Figure 5.  As gravitational waves pass through the 

legs of the interferometer, the distance between the 

test masses will change.  This will be detected by 

combining the signals from the two legs and 

examining the interference pattern due to the 

Doppler shift. 

 Due to the dynamic nature of the orbits, there will b

external forces.  Each leg will be connected by a 

laser, forming a Michelson interferometer shown in 

Figure 5.  As gravitational waves pass through the 

legs of the interferometer, the distance between the 

test masses will change.  This will be detected by 

combining the signals from the two legs and 

examining the interference pattern due to the 

Doppler shift. 

 Due to the dynamic nature of the orbits, there will b

lengths and angles between the satellites.  Figure 6 depicts the formation parameters which have 

                                                

lengths and angles between the satellites.  Figure 6 depicts the formation parameters which have 

                                                 
6 “Mission Strategy”, n.d., <http://lisa.jpl.nasa.gov/STRATEGY/getThere.html> (19APR2007) 

 Formation 
Parameter Specification 

d  (Leg Length) 6 55 10 1 10⋅ ± ⋅  km 
d (Leg Length 
Time Rate of 

Change) 
0±15 m/s  

θ  (Interior Leg 
Angle) 

60°±1.5 

lagν  (Formation, 
Sun, Earth Angle) 

22.5°±2.5 

Table 2. LISA Formation Parameter Limits

t6 
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strict requirements regarding these oscillations: the rate of change for each leg length ( d ) can 

not exceed 15 m/s, the leg length ( d ) must be within 2% of 5 million km, the interior angles (θ ) 

must be 60°±1.5, and the lag angle between the formation and the Earth in the Earth’s orbit ( lagν ) 

can be no less than 20° and no more than 25°7.  See Table 2. 

Figure 5. The LISA Formation as an 
Interferometer8 

Figure 6. The LISA Formation Parameters9 

 The propagator used for this project is LTool.  Developed for JPL, it is a library of 

Python scripts that takes into accounts such things as solar radiation, the gravitational effects of 

Jupiter, and other perturbations when propagating orbits.  Python itself is a modern, platform-

 
7 Hughes, Steven, “Preliminary Optimal Orbit Design for the Laser Interferometer Space  Antenna (LISA).” 
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independent language that has been in use since the early 1990s.  Since LTool has already 

been used for the mission planning of previous JPL missions, the software can be considered 

mature and able to produce reliable data. 

 

Phase One - Insertion Error Analysis 

Background 

 to minimize the unwanted formation changes occurs at orbital insertion.  

point with the desired velocity a  the navigation system of the 

Insertion Error Analysis 

Background 

 to minimize the unwanted formation changes occurs at orbital insertion.  

point with the desired velocity a  the navigation system of the 

 One way One way

Achievement of the design orbit occurs by entering the orbit as closely as possible to the desired 

craft used to insert the satellites.   With six variables describing the state of each satellite at 

insertion (epoch), there are a total of eighteen input variables that must be varied to properly 

examine the system.  To put this in perspective, consider a simple ballistics problem: if a gun 

fires a projectile at some unknown angle with a given initial velocity, how far will the projectile 

travel?  This problem contains one single variable, the angle at which the gun fires.  Thus, a 

                                                                                                                                                            

Achievement of the design orbit occurs by entering the orbit as closely as possible to the desired 

craft used to insert the satellites.   With six variables describing the state of each satellite at 

insertion (epoch), there are a total of eighteen input variables that must be varied to properly 

examine the system.  To put this in perspective, consider a simple ballistics problem: if a gun 

fires a projectile at some unknown angle with a given initial velocity, how far will the projectile 

travel?  This problem contains one single variable, the angle at which the gun fires.  Thus, a 

                                                                                                                                                             
9 “How LISA Works” n.d., <http://lisa.jpl.nasa.gov/TECHNOLOGY/challenges.html>  (19APR2007) 

Figure 7. A Simple Ballistics Example 

t the desired time.  This depends ont the desired time.  This depends on

8 “LISA Interferometry” n.d., <http://lisa.jpl.nasa.gov/TECHNOLOGY/LISA_interfer2.html>  (19APR2007) 



 17
model can be easily constructed and represented on a two-dimensional plot as seen in Figure 

7.  If the initial velocity also varies, then the problem becomes more complex.  Figure 8 shows 

the solution to the two variable ballistics problem, with the colors indicating height along the 

vertical axis.  Beyond two variables, a simple input to output relationship becomes difficult to 

icture. 

 

orm

B®, and the position and velocity vectors are manipulated via Equations (2), (3),  

), and (5). 

p

F ation Analysis With Respect to Time 

 The first step in this analysis involved developing the necessary algorithms to convert the 

output of the propagator into the formation parameters.  To achieve this the data are imported 

into MATLA

(4

 

,i j i jd = −R R 

( ) ( ),i j i j i jd = − ⋅ −V V R R

 (2) 

  (3) 

Figure 8. A Complex Ballistics Example 
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( ) ( )1

, ,
, ,

cos i j i k
j i k

i j i kd d
θ −

 − ⋅ −
=

 

R R R R



 (4) 

 1cos C
lag

CR R
ν − ⊕

⊕

 ⋅
= 

 

R R
  (5) 

 
Each of these parameters is then plotted with respect to time.  In the case of ideal initial 

conditions, Figure 9 shows 1,2d  over the course of ten years.  The data for the initial condition 

were validated at this point in that the graph produced from this analysis matched the graph 

produced in published papers on the topic of LISA orbits10.  Following this successful analysis, 

Figure 9. Baseline Leg Length Rate of Change for LISA 

                                                 
10 Ted Sweetser, “LISA Mission Description Version 2.1.”  2005. 
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the next step involved introducing errors into the nominal conditions and seeing how they 

affected the parameters. 

 To make the errors more understandable with respect to their orientation, all vectors were 

converted to the RTN coordinate system shown in Figure 10.  The radial axis (R) goes in the 

direction from the central orbited body to the spacecraft, the cross-track axis (N) is in a direction 

perpendicular to the ecliptic plane, and the in-track direction (T) is perpendicular to the plane 

formed by the radial and cross-track directions axes.  This allowed simple understanding of how 

the initial errors affected the initial spacecraft positions and velocities.  An arbitrary error 

composed of 8 1  meters in the radial direction and -2 m/sec in the radial velocity was inserted 

into the initial conditions of spacecraft one and propagated over the same ten year period.  

 shows the output for 

50⋅

1,2d .  2,3d  remains unaffected from the change, while both 1,2d  and 1,3d  

show a less than ideal curve with both exceeding the limit of 15 m/s for a significant amount of 

time.  Both results were as expected, however this approach did not represent a good way to 

examine many variations of the initial conditions since only one error condition could be 

analyzed at a time. 

Figure 10. The RTN Coordinate System 

Figure 

11
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Formation Analysis With Respect to Two Input Variation 

 Moving from the time domain to an initial position and velocity variation domain 

required the creation of a metric by which each formation could be analyzed and compared to the 

others.  Following discussions with Dr. Stephen Merkowitz at Goddard Space Flight Center, it 

was determined that percent time out of specification for the leg length rate of change parameter 

for all legs would be the best metric.  Due to the sinusoidal behavior of the formation parameters 

as seen in , the resulting analysis could be easily compressed and stored using only the 

times of the specification-boundary crossings. 

Figure 11

Figure 11. Leg Length Rate of Change Plot with Inserted Error 
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Since eighteen initial parameters exist, and this analysis takes into account only two, 

there are several different sub-types to consider.  Formation sensitivity to position or velocity 

errors along different directions forms one subtype, as seen in .  This compares how 

either a position or velocity error along one direction affects the metric versus a similar error 

along a different direction, with the colors again denoting height along the vertical axis.  

 shows sensitivity to position error versus sensitivity to velocity error in specific directions.  

This allows comparisons between initial position and initial velocity errors, including how 

having them occur in different directions changes the formation’s sensitivity to each.  Finally, the 

analysis can include an examination of how the position or velocity error of two different 

spacecraft affects the metric, shown in .  In Figures 12-14, I assumed the other 16 

 .  This compares how 

either a position or velocity error along one direction affects the metric versus a similar error 

along a different direction, with the colors again denoting height along the vertical axis.  

 shows sensitivity to position error versus sensitivity to velocity error in specific directions.  

This allows comparisons between initial position and initial velocity errors, including how 

having them occur in different directions changes the formation’s sensitivity to each.  Finally, the 

analysis can include an examination of how the position or velocity error of two different 

spacecraft affects the metric, shown in .  In Figures 12-14, I assumed the other 16 

Figure 12Figure 12

Figure 12. R-T Position Error Analysis 

Figure 

13

Figure 

13

Figure 14Figure 14
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variables remained at their nominal values.  Appendix A contains an example of a partial 

analysis of the Leg Length Rate of Change parameter for leg 1-2. 

Figure 13. R-VR Error Analysis 

 The shape of each of the previous three figures indicates that all initial parameters have 

an ideal value that minimizes the time out of specification, and values above or below that 

adversely affect the formation.  Furthermore, the slope of the surface at a given point represents 

the sensitivity of the particular formation parameter being viewed to changes in initial condition.  

It also appears that errors can essentially cancel each other out in terms of their affect on the leg 

length rate of change metric. 
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Figure 14. RS/C 1 (right axis) vs RS/C 2 (left axis) Analysis 

Formation Analysis of Full Input Variation 

 Because the propulsion vehicle will introduce error in all directions for both position and 

velocity, the analysis of two-input variation does not accurately represent a real situation.  

However, it is very difficult to visualize 18-dimensional space.  This led to the creation of a new 

approach to represent the effects of errors on the formation metric: the “rainplot”.  Achieving the 

level of detail seen in the two-parameter variation analysis did not seem realistic for 18 

dimensions.  A reduction in the information presented by the input error axes to only the 

maximum variation of the position and velocity variables provided a plane on which the 

formation metric along the orthogonal axis could be plotted. 
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 A set of initial formation conditions based on evenly distributed errors whose 

magnitude fell within the maximum variation given by a coordinate on the input Position-

Velocity (P-V) plane provided the orbital conditions to propagate and analyze.  The output 

consisted of plotting the time out of specification metric for the leg length time rate of change 

formation parameter along the perpendicular axis directly above the P-V coordinate for that run. 

By assuming that the metric would converge around a number, given a large enough 

sample size, the data from many different runs could be represented by single points.  To limit 

the time required to create each point 50 runs was used as the standard sample size.  Clumping of 

these points around a particular value indicates the validity of the convergence assumption.  By 

testing different coordinates on the P-V plane, the plot shows the overall formation sensitivity to 

Figure 15. The Rainplot 
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bounded uncertainties.  Figure 15 shows the results after roughly 700 runs and the analysis of 

over 105,000 propagations.  Each ‘x’ represents one run, while an ‘o’ is plotted on the P-V plane 

directly under each ‘x’ to more easily identify the error coordinates. 

 The expected trend of increased mean percent time out of specification as the error limits 

are increased in both directions is clearly visible, with a much greater sensitivity to velocity 

errors rather than position errors on the scale presented.  The peaks and valleys associated with 

the rainplot indicate that statistical convergence did not occur. 

 Since the velocity error dominates again, creating a cross-section of the rainplot at some 

specific position error provided a less computationally intensive method to obtain similar results.  

Figure 16 shows a cross-section where position error is assumed to be zero.  This plot is 

Figure 16. The Rainplot Cross-section 
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composed of 720 runs spread through 10 different velocity error values with a total of over 

108,000 propagations analyzed.  The line on the plot connects each the mean of each tested value 

and is not a regression.  The data clearly have started to converge to what appears to be a power 

function, with one outlier at V = 6.1 cm/s.  Though most likely a statistical aberration, it could be 

due to resonance between the MATLAB® random number generator and the propagator.  Less 

likely, there could be some astrodynamical cause. 

Conclusions 

 Through the use of increasingly complex methods of analysis, the dynamics of the 

formation of the three LISA satellites can be effectively examined in an error domain.  It has 

been shown that position and velocity errors have a preferred direction along which they have 

the greatest effect on the formation.  In particular, the formation appears to be much more 

sensitive to velocity errors in the in-track direction rather than position errors in the radial 

direction.  It also appears that for the examined metric, leg length rate of change, insertion errors 

can cancel their effects. 

 Both the rainplot and the two input variation analyses indicate that the velocity error 

terms dominate the dynamics of the formation with regards to leg length rate of change.  Because 

of this, a cross-section of the rainplot surface can be examined in greater detail for the same 

computational requirements to examine a specific range of velocity error for a given position 

error.  As the error threshold increases, the expected time out of specification also goes up.  

Furthermore, it appears that until the error threshold in the velocity direction reaches ±2.6 cm/sec 

the formation will tend to stay in specification for the leg length rate of change parameter. 
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Future Work 

Phase Two - Tracking System Accuracy 

 Beyond insertion errors, tracking errors affect how the formation is viewed.  This 

information is important so the natural dynamics of the formation as each satellite goes around 

its orbit causes the formation to change.  This must be accounted for so that the change in length 

due to the gravitational waves can be observed.  Tracking will occur through NASA’s Deep 

Space Network. 

 The Deep Space Network is composed of three communications facilities spaced 

approximately 120 degrees of longitude apart with one in Spain, one in California, and one in 

Australia.11  This network provides the capability to track and communicate with spacecraft to a 

very great distance, or with a weak communications system.  It can track objects very accurately; 

however, as with any real system, it has inherent error due to noise, design tolerances, and 

similar causes.  There are thus two groups of errors: precision errors caused by the finite number 

of decimal places available to the computers, and accuracy errors due to physical measurement.   

 These inherent errors cause the satellites to be observed with different state vectors than 

those they actually have, which changes the observed formation.  This can affect the ability of 

the LISA team to successfully perform the mission and detect gravitational waves.  A follow-on 

stude of these errors would be the next step in this process. 

 
                                                 
11 “Deep Space Network Home Page” n.d., <http://deepspace.jpl.nasa.gov/dsn/>  (19APR2007) 
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Appendix A – Sample Analysis 

Position Errors Along Various Directions 
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Velocity Errors Along Various Directions 
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Position-Velocity Errors Along Various Directions 
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Multi-Spacecraft Errors of Similar Type 
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Appendix B – Rainplot 
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Appendix C – Analysis Tools 

Time Domain Analysis 
This tool works by being given an insertion error scenario.  It then checks the 

available orbit data to determine if any propagation data are needed.  If so, it will write a 
file for the propagator containing the required propagations.  When it finds the 
propagation data, the tool will then create an array containing each formation parameter 
as a function of time, which is then plotted on a series of graphs.  The labels, titles, and 
limits for each graph are automatically generated to show the insertion error scenario, the 
limits for that particular formation parameter, and the units used. 

Error Domain Analysis 

Two Parameter Variation 
 A high and low limit for each axis is specified, along with the type and direction 
of error, and the spacecraft each affects.  An array containing all combinations of possible 
initial error based on the given step is created.  The tool then goes through the available 
propagation data to determine if any propagations are required.  If so, it will write a file 
for the propagator containing the required propagations.  When it finds all of the 
propagations, the tool will then run a time domain analysis for each error combination, 
then calculate the percent time out of specification for the leg length rate of change.  It 
saves this information to a database.  A surface plot is then formed with all labels and the 
title automatically generated. 

Full Parameter Variation 
 Maximum position and velocity error magnitude are specified, as well as the 
number of formations per trial to be used.  A set of random initial errors is created for 
each satellite for each formation and is then saved into a file for the propagator to read.  
Upon completion of all propagation, the data are analyzed in the time domain, and the 
time out of specification for the leg length rate of change parameter is determined.  
Several statistics from each run is calculated including the mean, maximum, minimum, 
and standard deviation.  All data are then saved into a database. 
 To generate the plot, the database is read, x’s and o’s are plotted, and a surface is 
generated using cubic regression of the means of the type of plot specified (mean, 
maximum, minimum, or standard deviation). 
 Cross-section generation follows the same method as above, except the magnitude 
of position error is held constant, and no regression is performed on the plot.  In addition, 
the plot is on a two-dimensional axis, not a three-dimensional one. 
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Appendix D – Analysis Code 

Miscellaneous Scripts 

Initialize.m 
%this script initializes the project to enable all forms of analysis to 
be 
%run by setting up global variables and plot labels. 
 
global errdata 
phase1 
global abscissa 
global ordinate 
SFAG 
MCAG 
global mcagarray 
rainplot 
 
labelarray = [{'R Error (m)'};... 
    {'T Error (m)'};... 
    {'N Error (m)'};... 
    {'Vr Error (\mum/Sec)'};... 
    {'Vt Error (\mum/Sec)'};... 
    {'Vn Error (\mum/Sec)'}]; 
 
[LRAdbData,LRAdbData5yr] = LRAdbInit(); 
curDB = 0; 
LRAdbTemp = []; 
LRAtemp = []; 

datafilename.m 
%This function creates a structure with the 3 filenames for the 
spacecraft 
%propagation data 
 
function [fn] = datafilename(errdata) 
 
    dbdir = 'c:\\data\\'; 
 
    fn.sc1 = [dbdir 
'sc1\\sc1_x_',int2str(errdata(1)),'_y_',int2str(errdata(4)),'_z_',int2s
tr(errdata(7)),...        
'_vx_',int2str(errdata(10)),'_vy_',int2str(errdata(13)),'_vz_',int2str(
errdata(16))]; 
     
    fn.sc2 = [dbdir 
'sc2\\sc2_x_',int2str(errdata(2)),'_y_',int2str(errdata(5)),'_z_',int2s
tr(errdata(8)),...        
'_vx_',int2str(errdata(11)),'_vy_',int2str(errdata(14)),'_vz_',int2str(
errdata(17))]; 
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    fn.sc3 = [dbdir 
'sc3\\sc3_x_',int2str(errdata(3)),'_y_',int2str(errdata(6)),'_z_',int2s
tr(errdata(9)),...        
'_vx_',int2str(errdata(12)),'_vy_',int2str(errdata(15)),'_vz_',int2str(
errdata(18))]; 

datacheck.m 
%this function generates a flag value based on whether or not raw orbit 
%data files exist 
 
function [flag] = datacheck(fn) 
     
    fn1id = fopen(fn.sc1); 
    fn2id = fopen(fn.sc2); 
    fn3id = fopen(fn.sc3); 
     
    flag = 0; 
     
    if fn1id == -1 
        flag = 1; 
    else 
        fclose(fn1id); 
    end 
    if fn2id == -1 
        flag = flag + 2; 
    else 
        fclose(fn2id); 
    end 
    if fn3id == -1 
        flag = flag + 4; 
    else 
        fclose(fn3id); 
    end 

CurRunVar.m 
%This function generates a string that is composed of 
%sc1x_sc2x_sc3x_sc1y_etc... 
 
function [CurRun] = CurRunVar(errdata) 
    CurRun = []; 
    for i = [1:17] 
        CurRun = [CurRun,int2str(errdata(i)),'_']; 
    end 
    CurRun = [CurRun,int2str(errdata(18))]; 

md5.m 
function y = md5( a1, a2, a3 ); 
%MD5 verifies or generates a signature using the md5 algorithm. 
%   MD5( M ) or MD5( M, 0 ) returns a message digest (signature) 
%   from the matrix M. Currently the classes double and char are 
supported. 
% 
%   MD5( M, 1 )  generates the digest from a file. M must be a char  
%   array with the filename/filepath. 
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% 
%   You can also give a signature as the last argument. In this case 
the 
%   generated signature will be compared against the given. Returns 0 
or 1. 
%   Example: MD5( M, 1, '7dea362b3fac8e00956a4952a3d4f474' ); 
% 
%   Md5 is actually not intended to work with large files (> 5 MB, see 
notes), 
%   but is really comfortable to process directly matlab matrices. 
 
 
%   Notes:     o There are more hashing routines, that could be 
implemented 
%                eg. CRC, Adler, Haval, SHA, RMD... 
%              o There's a problem with incremental file reading. As a 
workaround 
%                I had to load the whole file into the memory. I tested 
with a 50 MB 
%                file but though it worked well, I should fix this 
problem if there's 
%                a need to process large files. 
%              o For questions/comments/requests: support@treetron.ch. 
% 
%   Credits:   I used a freeware library with different hash 
algorithms. It's from  
%              Alex? (Ritlabs) and was downloaded from Torrys. Thanks a 
lot. 
%              Built with Borland Delphi. 
% 
%   License:   You may use and distribute md5 free of charge for 
commercial and  
%              non-commercial use. Please don't modify this notice. 
Before using this 
%              routine you have to accept the disclaimer of warranty 
below. 
% 
%   Warranty:  md5 is supplied as is. The author disclaims all 
warranties, 
%              expressed or implied, including, without limitation, the 
warranties of 
%              merchantability and of fitness for any purpose. The 
author assumes no 
%              liability for damages, direct or consequential, which 
may result from the 
%              use of md5. 
% 
%   Author:    Hans-Peter Suter 
%   Revision:  0.7 
%   Date:      25.7.2003 
% 
%   Copyright: Copyright (c) 2003, Treetron GmbH. 
%              All rights reserved. 
 
if nargin == 3 
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  b1 = a1; % matrix 
  b2 = a2; % isFile 
  b3 = a3; % signature 
elseif nargin == 2 
  if isa( a2, 'char' ) 
    b1 = a1; 
    b2 = 0; 
    b3 = a2; 
  else 
    b1 = a1; 
    b2 = a2; 
    b3 = []; 
  end 
elseif nargin == 1 
  b1 = a1; 
  b2 = 0; 
  b3 = []; 
else 
  error( '3 arguments required' ); 
end; 
   
% some checks 
if ~isempty( b3 )   
  if ~isa( b3, 'char' ) 
    error( 'signature must be a char array' ); 
  end 
  if length( b3 ) ~= 32 
    error( 'signature must have 32 chars' ); 
  end 
end 
if ~(isa( b1, 'char' ) | isa( b1, 'double' )) 
  error( 'value/filename must be a double or char array' ); 
end 
if ~(b2 == 0 | b2 == 1) 
  error( 'isFile must be 0 or 1' ); 
end 
 
% call dll 
if isempty( b3 ) 
  y = md5DLL( b1, b2 ); 
else 
  y = md5DLL( b1, b2, b3 ); 
end; 

Time Domain Analysis Scripts 

maganalysis.m 
%This script determines if the orbit data exists, 
%then runs the actual analysis script, FormAnal() 
 
fn = datafilename(errdata); 
flag = datacheck(fn); 
 
if ~flag 
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    sc1 = dlmread(fn.sc1,','); 
    sc2 = dlmread(fn.sc2,','); 
    sc3 = dlmread(fn.sc3,','); 
 
    magsc = FormAnal(sc1,sc2,sc3); 
    fna = 'SC1_'; 
    fna = [fna,num2str(errdata(1)) '_']; 
    fna = [fna,num2str(errdata(4)) '_']; 
    fna = [fna,num2str(errdata(7)) '_']; 
    fna = [fna,num2str(errdata(10)) '_']; 
    fna = [fna,num2str(errdata(13)) '_']; 
    fna = [fna,num2str(errdata(16)) '; SC2_']; 
    fna = [fna,num2str(errdata(2)) '_']; 
    fna = [fna,num2str(errdata(5)) '_']; 
    fna = [fna,num2str(errdata(8)) '_']; 
    fna = [fna,num2str(errdata(11)) '_']; 
    fna = [fna,num2str(errdata(14)) '_']; 
    fna = [fna,num2str(errdata(17)) '; SC3_']; 
    fna = [fna,num2str(errdata(3)) '_']; 
    fna = [fna,num2str(errdata(6)) '_']; 
    fna = [fna,num2str(errdata(9)) '_']; 
    fna = [fna,num2str(errdata(12)) '_']; 
    fna = [fna,num2str(errdata(15)) '_']; 
    fna = [fna,num2str(errdata(18))]; 
  
    %legrateanalyzer 
    %LRAdbSave 
    %analysisplotter 
    %lldpplotter 
 
else 
 
    dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',errdata,'-append') 
    if (flag == 1) || (flag == 3) || (flag == 7) || (flag == 5) 
        disp([fn.sc1,' does not exist']) 
    end 
    if (flag == 2) || (flag == 3) || (flag == 6) || (flag == 7) 
        disp([fn.sc2,' does not exist']) 
    end 
    if (flag == 4) || (flag == 5) || (flag == 6) || (flag == 7) 
        disp([fn.sc3,' does not exist']) 
    end 
end 

FormAnal.m 
%this function analyzes the raw orbital data files to generate the 
%different formation parameters. 
 
function [magsc] = FormAnal(sc1,sc2,sc3) 
 
    earthbuff = dlmread('e:\\data\\earthvec',','); 
    earthvec = 
[earthbuff(:,1),earthbuff(:,2),earthbuff(:,3),earthbuff(:,4)]; 
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    sc12=sc2(:,2:4)-sc1(:,2:4);%km 
    sc13=sc3(:,2:4)-sc1(:,2:4); 
    sc23=sc3(:,2:4)-sc2(:,2:4); 
    sc12v=1000.*(sc2(:,5:7)-sc1(:,5:7));%m/s 
    sc13v=1000.*(sc3(:,5:7)-sc1(:,5:7)); 
    sc23v=1000.*(sc3(:,5:7)-sc2(:,5:7)); 
 
    magsc12 = sqrt(sum(sc12'.^2)');%km 
    magsc13 = sqrt(sum(sc13'.^2)'); 
    magsc23 = sqrt(sum(sc23'.^2)'); 
    magsc12v = sqrt(sum(sc12v'.^2)');%m/s 
    magsc13v = sqrt(sum(sc13v'.^2)'); 
    magsc23v = sqrt(sum(sc23v'.^2)'); 
    dmagsc12 = (dot(1000.*sc12',sc12v')'./(1000.*magsc12));%m/s 
    dmagsc13 = (dot(1000.*sc13',sc13v')'./(1000.*magsc13)); 
    dmagsc23 = (dot(1000.*sc23',sc23v')'./(1000.*magsc23)); 
 
    angle1 = acosd(dot(sc12',sc13')'./(magsc12.*magsc13));%deg 
    angle2 = acosd(-dot(sc12',sc23')'./(magsc12.*magsc23)); 
    angle3 = acosd(dot(sc23',sc13')'./(magsc23.*magsc13)); 
 
    angle1v = (dot(sc12v',1000.*sc13')'+dot(1000.*sc12',sc13v')'-
(dmagsc12.*1000.*magsc13+1000.*magsc12.*dmagsc13).*cosd(angle1)); 
    angle1v = angle1v./(-1000.*magsc12.*1000.*magsc13.*sind(angle1)); 
 
    angle2v = (dot(-sc12v',1000.*sc23')'+dot(1000.*-sc12',sc23v')'-
(dmagsc12.*1000.*magsc23+1000.*magsc12.*dmagsc23).*cosd(angle2)); 
    angle2v = angle2v./(-1000.*magsc12.*1000.*magsc23.*sind(angle2)); 
%angle2v = 0.*angle2v; 
    angle3v = (dot(sc23v',sc13')'+dot(sc23',sc13v')'-
(dmagsc23.*magsc13+magsc23.*dmagsc13).*cosd(angle3)); 
    angle3v = angle3v./(-magsc23.*magsc13.*sind(angle3)); 
    angle3v = 0.*angle3v; 
 
    scc = (sc1(:,2:4)+sc2(:,2:4)+sc3(:,2:4))./3; 
    earthpos = earthvec(:,2:4); 
    magscc = sqrt(sum(scc'.^2)'); 
    magearthpos = sqrt(sum(earthpos'.^2)'); 
    earthangle = acosd(dot(scc',earthpos')'./(magscc.*magearthpos)); 
 
     
    magsc=[magsc12,magsc13,magsc23,... 
        dmagsc12,dmagsc13,dmagsc23,... 
        angle1,angle2,angle3,... 
        angle1v,angle2v,angle3v,... 
        earthangle]; 

analysisplotter.m 
%This script plots the various formation parameters WRT time 
 
newfig = figure; 
 
plot(magsc(:,1:3)) 
title(['Leg Length vs Time Plot (',fna,')'],'interpreter','none') 
xlabel('Time from epoch (days)') 
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ylabel('Leg Length (Km)') 
legend('1-2','1-3','2-3') 
line(xlim,[5.05e6 5.05e6],'Color','k') 
line(xlim,[4.95e6 4.95e6],'Color','k') 
saveas(newfig,['c:\\tsptemp\\LLP',fna(9:length(fna))],'fig') 
 
newfig = figure; 
 
plot(magsc(:,4:6)) 
title(['Leg Length Rate of Change vs Time Plot 
(',fna,')'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Length Rate of Change (m/sec)') 
legend('1-2','1-3','2-3') 
line(xlim,[15 15],'Color','k') 
line(xlim,[-15 -15],'Color','k') 
saveas(newfig,['c:\\tsptemp\\LLROCP',fna(9:length(fna))],'fig') 
 
newfig = figure; 
 
plot(magsc(:,7:9)) 
title(['Leg Angle Plot (',fna,')'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Angle (deg)') 
legend('Vertex 1','Vertex 2','Vertex 3') 
line(xlim,[61.5 61.5],'Color','k') 
line(xlim,[58.5 58.5],'Color','k') 
saveas(newfig,['c:\\tsptemp\\LAP',fna(9:length(fna))],'fig') 
 
 
 
newfig = figure; 
 
plot(magsc(:,13)) 
title(['Earth Angle Plot (',fna,')'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Earth Angle (deg)') 
line(xlim,[25 25],'Color','k') 
line(xlim,[20 20],'Color','k') 
saveas(newfig,['c:\\tsptemp\\EAP',fna(9:length(fna))],'fig') 

baselineplots.m 
%this script plots the baseline formation parameters WRT time 
 
format long 
format compact 
 
errdata = zeros(1,18); 
 
fn = datafilename(errdata); 
 
sc1 = dlmread(fn.sc1,','); 
sc2 = dlmread(fn.sc2,','); 
sc3 = dlmread(fn.sc3,','); 
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earthbuff = dlmread('e:\\data\\earthvec',','); 
earth = [earthbuff(:,1),earthbuff(:,2),earthbuff(:,3),earthbuff(:,4)]; 
 
sc12=sc2(:,2:4)-sc1(:,2:4);%km 
sc13=sc3(:,2:4)-sc1(:,2:4); 
sc23=sc3(:,2:4)-sc2(:,2:4); 
sc12v=1000.*(sc2(:,5:7)-sc1(:,5:7));%m/s 
sc13v=1000.*(sc3(:,5:7)-sc1(:,5:7)); 
sc23v=1000.*(sc3(:,5:7)-sc2(:,5:7)); 
 
magsc12 = sqrt(sum(sc12'.^2)');%km 
magsc13 = sqrt(sum(sc13'.^2)'); 
magsc23 = sqrt(sum(sc23'.^2)'); 
magsc12v = sqrt(sum(sc12v'.^2)');%m/s 
magsc13v = sqrt(sum(sc13v'.^2)'); 
magsc23v = sqrt(sum(sc23v'.^2)'); 
dmagsc12 = (dot(1000.*sc12',sc12v')'./(1000.*magsc12));%m/s 
dmagsc13 = (dot(1000.*sc13',sc13v')'./(1000.*magsc13)); 
dmagsc23 = (dot(1000.*sc23',sc23v')'./(1000.*magsc23)); 
 
angle1 = acosd(dot(sc12',sc13')'./(magsc12.*magsc13));%deg 
angle2 = acosd(-dot(sc12',sc23')'./(magsc12.*magsc23)); 
angle3 = acosd(dot(sc23',sc13')'./(magsc23.*magsc13)); 
 
angle1v = (dot(sc12v',1000.*sc13')'+dot(1000.*sc12',sc13v')'-
(dmagsc12.*1000.*magsc13+1000.*magsc12.*dmagsc13).*cosd(angle1)); 
angle1v = angle1v./(-1000.*magsc12.*1000.*magsc13.*sind(angle1)); 
 
angle2v = (dot(-sc12v',1000.*sc23')'+dot(1000.*-sc12',sc23v')'-
(dmagsc12.*1000.*magsc23+1000.*magsc12.*dmagsc23).*cosd(angle2)); 
angle2v = angle2v./(-1000.*magsc12.*1000.*magsc23.*sind(angle2)); 
%angle2v = 0.*angle2v; 
angle3v = (dot(sc23v',sc13')'+dot(sc23',sc13v')'-
(dmagsc23.*magsc13+magsc23.*dmagsc13).*cosd(angle3)); 
angle3v = angle3v./(-magsc23.*magsc13.*sind(angle3)); 
angle3v = 0.*angle3v; 
 
%angle1v = acosd(dot(sc12v',sc13v')'./(magsc12v.*magsc13v)); 
%angle2v = acosd(-dot(sc12v',sc23v')'./(magsc12v.*magsc23v)); 
%angle3v = acosd(dot(sc23v',sc13v')'./(magsc23v.*magsc13v)); 
 
scc = (sc1(:,2:4)+sc2(:,2:4)+sc3(:,2:4))./3; 
earthpos = earth(:,2:4); 
magscc = sqrt(sum(scc'.^2)'); 
magearthpos = sqrt(sum(earthpos'.^2)'); 
earthangle = acosd(dot(scc',earthpos')'./(magscc.*magearthpos)); 
 
 
magsc=[magsc12,magsc13,magsc23,... 
    dmagsc12,dmagsc13,dmagsc23,... 
    angle1,angle2,angle3,... 
    angle1v,angle2v,angle3v,... 
    earthangle]; 
 
newfig = figure; 
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plot(magsc(:,1:3)) 
title(['Leg Length vs Time Plot (baseline)'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Length (Km)') 
legend('1-2','1-3','2-3') 
line(xlim,[5.05e6 5.05e6],'Color','k') 
line(xlim,[4.95e6 4.95e6],'Color','k') 
 
newfig = figure; 
 
plot(magsc(:,4:6)) 
title(['Leg Length Rate of Change vs Time Plot 
(baseline)'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Length Rate of Change (m/sec)') 
legend('1-2','1-3','2-3') 
line(xlim,[15 15],'Color','k') 
line(xlim,[-15 -15],'Color','k') 
 
newfig = figure; 
 
plot(magsc(:,7:9)) 
title(['Leg Angle Plot (baseline)'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Angle (deg)') 
legend('Vertex 1','Vertex 2','Vertex 3') 
line(xlim,[61.5 61.5],'Color','k') 
line(xlim,[58.5 58.5],'Color','k') 
 
newfig = figure; 
 
plot(magsc(:,10:12)) 
title(['Leg Angle Rate of Change Plot 
(baseline)'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Leg Angle Rate of Change (deg/sec)') 
legend('Vertex 1','Vertex 2','Vertex 3') 
 
newfig = figure; 
 
plot(magsc(:,13)) 
title(['Earth Angle Plot (baseline)'],'interpreter','none') 
xlabel('Time from epoch (days)') 
ylabel('Earth Angle (deg)') 
line(xlim,[25 25],'Color','k') 
line(xlim,[20 20],'Color','k') 

Error Domain Analysis – Two Parameter Variation Scripts 

SFDG.m 
%generates data for the two-parameter variation plots 
x = abscissa(3):abscissa(4):abscissa(5); 
y = ordinate(3):ordinate(4):ordinate(5); 
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run = 1; 
deltas = []; 
for a = x 
    for b = y 
        deltas(run).errdata = zeros(1,18); 
        deltas(run).errdata(3*abscissa(2)-(3-abscissa(1))) = a; 
        deltas(run).errdata(3*ordinate(2)-(3-ordinate(1))) = b; 
        run = run+1; 
    end 
end 
 
proplist = []; 
 
for a = deltas 
    errdata = a.errdata; 
    fn = datafilename(errdata); 
    flag = datacheck(fn); 
    if (flag) 
        proplist = [proplist;errdata]; 
    elseif isempty(LRAdbLoad(errdata,LRAdbData)) 
        sc1 = dlmread(fn.sc1,','); 
        sc2 = dlmread(fn.sc2,','); 
        sc3 = dlmread(fn.sc3,','); 
        magsc = FormAnal(sc1,sc2,sc3); 
        try 
            legrateanalyzer 
        catch 
            disp('Error in Analysis, exiting script without saving...') 
            return  
        end 
        LRAdbTempSave 
    end 
end 
 
if ~isempty(proplist) 
    dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',proplist,'-
append','precision','%20.0f') 
    disp( ' ' ) 
    disp( ['There are ' num2str(length(proplist)) ' Propagations 
Required.'] ) 
    disp( ' ' ) 
else 
    disp(' ') 
    disp('No Propagations Required, saving.') 
    disp(' ') 
    if ~isempty(LRAtemp) 
        LRAdbSave 
    end 
end 

LRAdbLoad.m 
%Retrieves data from the LRA database 
 
function CurRunStruct = LRAdbLoad(errdata,LRAdbData) 
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    currentrun = CurRunVar(errdata); 
    currentrun = ['LRA_' md5(currentrun)]; 
    disp([CurRunVar(errdata) ' -> ' currentrun]) 
     
        if isfield(LRAdbData,currentrun) 
            CurRunStruct = LRAdbData.(currentrun); 
        else 
            CurRunStruct = []; 
        end 

legrateanalyzer.m 
%analyzes time out of spec for leg rate parameter over 10 years 
 
highlim = 15; 
lowlim = -15; 
 
%magsc=[magsc12,magsc13,magsc23,... 
%        dmagsc12,dmagsc13,dmagsc23,... 
%        angle1,angle2,angle3,... 
%        angle1v,angle2v,angle3v,... 
%        earthangle]; 
 
binarray12 = (magsc(:,4) > highlim) | (magsc(:,4) < lowlim); 
binarray13 = (magsc(:,5) > highlim) | (magsc(:,5) < lowlim); 
binarray23 = (magsc(:,6) > highlim) | (magsc(:,6) < lowlim); 
 
binarrayloc12 = find(binarray12); 
binarrayloc13 = find(binarray13); 
binarrayloc23 = find(binarray23); 
 
if ~isempty(binarrayloc12) 
    dbinarrayloc12 = diff(binarrayloc12) - 1; 
    pulsestart12 = binarrayloc12(1); 
    pulseend12 = binarrayloc12(length(binarrayloc12)); 
    spikes12 = find(dbinarrayloc12); 
    numspikes12 = length(spikes12); 
    if numspikes12 >= 1 
        pulsestart12 = 
[pulsestart12;binarrayloc12(find(dbinarrayloc12)+1)]; 
        pulseend12 = [binarrayloc12(find(dbinarrayloc12));pulseend12]; 
    end 
else 
    pulsestart12 = []; 
    pulseend12 = []; 
    spikes12 = []; 
end 
 
if ~isempty(binarrayloc13) 
    dbinarrayloc13 = diff(binarrayloc13) - 1; 
    pulsestart13 = binarrayloc13(1); 
    pulseend13 = binarrayloc13(length(binarrayloc13)); 
    spikes13 = find(dbinarrayloc13); 
    numspikes13 = length(find(diff(binarrayloc13)-1)); 
    if numspikes13 >= 1 
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        pulsestart13 = 
[pulsestart13;binarrayloc13(find(dbinarrayloc13)+1)]; 
        pulseend13 = [binarrayloc13(find(dbinarrayloc13));pulseend13]; 
    end 
else 
    pulsestart13 = []; 
    pulseend13 = []; 
    spikes13 = []; 
end 
 
if ~isempty(binarrayloc23) 
    dbinarrayloc23 = diff(binarrayloc23) - 1; 
    pulsestart23 = binarrayloc23(1); 
    pulseend23 = binarrayloc23(length(binarrayloc23)); 
    spikes23 = find(dbinarrayloc23-1); 
    numspikes23 = length(dbinarrayloc23); 
    if numspikes23 >= 1 
        pulsestart23 = 
[pulsestart23;binarrayloc23(find(dbinarrayloc23)+1)]; 
        pulseend23 = [binarrayloc23(find(dbinarrayloc23));pulseend23]; 
    end 
else 
    pulsestart23 = []; 
    pulseend23 = []; 
    spikes23 = []; 
end 

LRAdbTempSave.m 
%LRAdbTempSave - saves the legrateanalyzer output to a temporary 
structure 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
currentrun = CurRunVar(errdata); 
currentrun = ['LRA_' md5(currentrun)]; 
disp([currentrun]); 
 
LRAtemp.(currentrun).pulsestart12 = pulsestart12; 
LRAtemp.(currentrun).pulseend12 = pulseend12; 
LRAtemp.(currentrun).pulsestart13 = pulsestart13; 
LRAtemp.(currentrun).pulseend13 = pulseend13; 
LRAtemp.(currentrun).pulsestart23 = pulsestart23; 
LRAtemp.(currentrun).pulseend23 = pulseend23; 
LRAtemp.(currentrun).spikes12 = spikes12; 
LRAtemp.(currentrun).spikes13 = spikes13; 
LRAtemp.(currentrun).spikes23 = spikes23; 

LRAdbSave.m 
%LRAdbSave - saves the temporary structure to the LRA database 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
currentrun = CurRunVar(errdata); 
currentrun = ['LRA_' md5(currentrun)]; 
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buff = fieldnames(LRAtemp); 
for a =1:length(buff) 
    LRAdbData.(char(buff(a))) = LRAtemp.(char(buff(a))); 
end 
 
save([dbdir 'LRAdb.mat'],'LRAdbData'); 

LRATPctGraph.m 
%LRATPctGraph - Plots the two-parameter variation data 
 
b = 1; 
c = 1; 
run = 1; 
z = zeros(length(y),length(x)); 
for a = deltas 
    data = LRAdbLoad(a.errdata,LRAdbData); 
    z(c,b) = sum(data.pulseend12 - data.pulsestart12)/3654; 
    c = c+1; 
    if c == (length(y)+1) 
        b = b+1; 
        c = 1; 
    end 
end 
surf(x,y,z); 
xlabel(labelarray(abscissa(2))) 
ylabel(labelarray(ordinate(2))) 
zlabel('Normalized Time Out of Spec') 

Error Domain Analysis – Full Parameter Variation Scripts 

MCDG1.m 
% Monte Carlo Data Generator part 1 
 
rand('state', sum(100*clock)); 
errdataruns = rand(mcagarray(1),18) - 0.5; 
errdataruns(:,1:9) = round(mcagarray(2)*errdataruns(:,1:9)); 
errdataruns(:,10:18) = round(mcagarray(3)*errdataruns(:,10:18)); 
 
dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',errdataruns,'-append') 

MCDG25yr.m 
MCDG2LRA5yr 
clear errdataruns 

MCDG2LRA5yr.m 
%Monte Carlo Data Generator part 2 
 
PooSraw = []; 
 
for i = 1:mcagarray(1) 
    errdata = errdataruns(i,:); 
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        fn = datafilename(errdata); 
        sc1 = dlmread(fn.sc1,','); 
        sc2 = dlmread(fn.sc2,','); 
        sc3 = dlmread(fn.sc3,','); 
        magsc = FormAnal(sc1,sc2,sc3); 
        legrateanalyzer5yr 
        currentrun = ['LRA_' md5(CurRunVar(errdata))]; 
        disp(currentrun) 
   
    data.pulsestart12 = pulsestart12; 
    data.pulseend12 = pulseend12; 
    data.pulsestart13 = pulsestart13; 
    data.pulseend13 = pulseend13; 
    data.pulsestart23 = pulsestart23; 
    data.pulseend23 = pulseend23; 
    data.spikes12 = spikes12; 
    data.spikes13 = spikes13; 
    data.spikes23 = spikes23; 
     
    binarray12 = zeros(1,1827); 
    binarray13 = zeros(1,1827); 
    binarray23 = zeros(1,1827); 
    for i = 1:length(data.pulsestart12) 
        binarray12(data.pulsestart12(i):data.pulseend12(i)) = 1; 
    end 
    for i = 1:length(data.pulsestart13) 
        binarray13(data.pulsestart13(i):data.pulseend13(i)) = 1; 
    end 
    for i = 1:length(data.pulsestart23) 
        binarray23(data.pulsestart23(i):data.pulseend23(i)) = 1; 
    end 
     
    PooSraw = [PooSraw,sum((binarray12 | binarray13) | binarray23) / 
1827]; 
     
end 
 
PooSmean = mean(PooSraw); 
PooSstd = std(PooSraw); 
PooSmax = max(PooSraw); 
PooSmin = min(PooSraw); 
 
PooSdata = LRAPooSLoad5yr(mcagarray); 
 
if isempty(PooSdata) 
    PooSdata.mean = PooSmean; 
    PooSdata.std = PooSstd; 
    PooSdata.max = PooSmax; 
    PooSdata.min = PooSmin; 
else 
    PooSdata.mean = [PooSdata.mean,PooSmean]; 
    PooSdata.std = [PooSdata.std,PooSstd]; 
    if PooSmax > PooSdata.max 
        PooSdata.max = PooSmax; 
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    end 
    if PooSmin < PooSdata.min 
        Poosdata.min = PooSmin; 
    end 
end 
LRAPooSSave5yr 

legrateanalyzer5yr.m 
%analyzes time out of spec for leg rate parameter over 5 years 
highlim = 15; 
lowlim = -15; 
 
%magsc=[magsc12,magsc13,magsc23,... 
%        dmagsc12,dmagsc13,dmagsc23,... 
%        angle1,angle2,angle3,... 
%        angle1v,angle2v,angle3v,... 
%        earthangle]; 
 
binarray12 = (magsc(1:1827,4) > highlim) | (magsc(1:1827,4) < lowlim); 
binarray13 = (magsc(1:1827,5) > highlim) | (magsc(1:1827,5) < lowlim); 
binarray23 = (magsc(1:1827,6) > highlim) | (magsc(1:1827,6) < lowlim); 
 
binarrayloc12 = find(binarray12); 
binarrayloc13 = find(binarray13); 
binarrayloc23 = find(binarray23); 
 
if ~isempty(binarrayloc12) 
    dbinarrayloc12 = diff(binarrayloc12) - 1; 
    pulsestart12 = binarrayloc12(1); 
    pulseend12 = binarrayloc12(length(binarrayloc12)); 
    spikes12 = find(dbinarrayloc12); 
    numspikes12 = length(spikes12); 
    if numspikes12 >= 1 
        pulsestart12 = 
[pulsestart12;binarrayloc12(find(dbinarrayloc12)+1)]; 
        pulseend12 = [binarrayloc12(find(dbinarrayloc12));pulseend12]; 
    end 
else 
    pulsestart12 = []; 
    pulseend12 = []; 
    spikes12 = []; 
end 
 
if ~isempty(binarrayloc13) 
    dbinarrayloc13 = diff(binarrayloc13) - 1; 
    pulsestart13 = binarrayloc13(1); 
    pulseend13 = binarrayloc13(length(binarrayloc13)); 
    spikes13 = find(dbinarrayloc13); 
    numspikes13 = length(find(diff(binarrayloc13)-1)); 
    if numspikes13 >= 1 
        pulsestart13 = 
[pulsestart13;binarrayloc13(find(dbinarrayloc13)+1)]; 
        pulseend13 = [binarrayloc13(find(dbinarrayloc13));pulseend13]; 
    end 
else 
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    pulsestart13 = []; 
    pulseend13 = []; 
    spikes13 = []; 
end 
 
if ~isempty(binarrayloc23) 
    dbinarrayloc23 = diff(binarrayloc23) - 1; 
    pulsestart23 = binarrayloc23(1); 
    pulseend23 = binarrayloc23(length(binarrayloc23)); 
    spikes23 = find(dbinarrayloc23-1); 
    numspikes23 = length(dbinarrayloc23); 
    if numspikes23 >= 1 
        pulsestart23 = 
[pulsestart23;binarrayloc23(find(dbinarrayloc23)+1)]; 
        pulseend23 = [binarrayloc23(find(dbinarrayloc23));pulseend23]; 
    end 
else 
    pulsestart23 = []; 
    pulseend23 = []; 
    spikes23 = []; 
end 

LRAPooSLoad5yr.m 
%loads specific rainplot data from the LRAPooS (Percent out of Spec) 
%database 
 
function [data] = LRAPooSLoad(mcagarray) 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
load([dbdir 'LRAPooS5yr.mat']); 
nstr = ['n_' num2str(mcagarray(1))]; 
pstr = ['p_' num2str(mcagarray(2))]; 
vstr = ['v_' num2str(mcagarray(3))]; 
 
if isfield(LRAPooSData, nstr) & isfield(LRAPooSData.(nstr), pstr) & 
isfield(LRAPooSData.(nstr).(pstr), vstr) 
    data = LRAPooSData.(nstr).(pstr).(vstr); 
else 
    data = []; 
end 

LRAPooSSave5yr.m 
%LRAPooSSave - saves data into the rainplot LRAPooS database 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
load([dbdir 'LRAPooS5yr.mat']); 
nstr = ['n_' num2str(mcagarray(1))]; 
pstr = ['p_' num2str(mcagarray(2))]; 
vstr = ['v_' num2str(mcagarray(3))]; 
 
LRAPooSData.(nstr).(pstr).(vstr) = PooSdata; 
save([dbdir 'LRAPooS5yr.mat'],'LRAPooSData'); 
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Rainplotter.m 
%creates the actual rainplot 
function [ state ] = 
Rainplotter(dbdir,dbfile,db,ncurr,rplottitle,plim,vlim,type) 
 
load([dbdir dbfile]); 
 
eval(['narray = fieldnames(',db,');']); 
eval(['parray = fieldnames(',db,'.(ncurr));']); 
 
p = []; 
v = []; 
z = []; 
for i = 1:length(parray) 
    pcurr = char(parray(i)); 
    pcurrnum = str2num(pcurr(3:length(pcurr))); 
    eval(['varray = fieldnames(',db,'.(ncurr).(pcurr));']); 
    for j = 1:length(varray) 
        vcurr = char(varray(j)); 
        vcurrnum = str2num(vcurr(3:length(vcurr))); 
        eval(['z = [z,',db,'.(ncurr).(pcurr).(vcurr).',type,'];']); 
        eval(['n = length(',db,'.(ncurr).(pcurr).(vcurr).',type,');']); 
        p = [p,pcurrnum.*ones(1,n)]; 
        v = [v,vcurrnum.*ones(1,n)]; 
    end 
end 
 
figure 
 
plot3(p,v,z,'xk',p,v,zeros(length(p),length(v)),'ok'),hold 
 
if plim 
    xlim([0 plim]) 
else 
    plim = xlim; 
    plim = plim(2); 
end 
 
if vlim 
    ylim([0 vlim]) 
else 
    vlim = xlim; 
    vlim = vlim(2); 
end 
 
tx = 0:plim/100:plim; 
ty = 0:vlim/100:vlim; 
[XI,YI] = meshgrid(tx,ty); 
ZI = griddata(p,v,z,XI,YI,'cubic'); 
surf(XI,YI,ZI,'FaceAlpha',0.33,'EdgeAlpha',0.33),hold off 
zmin = zlim; 
if zmin(1) < 0 
    zlim([0 zmin(2)]); 
end 
grid on 
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xlabel('Position Error (m)') 
ylabel('Velocity Error ({\mu}m/sec)') 
zlabel('Mean Normalized Time out of Spec') 
title(rplottitle) 

Error Domain Analysis – Full Variation Rainplot Cross-Section 
Scripts 

initialize.m 
%this script initializes the project to enable all forms of analysis to 
be 
%run for rplotcross-section 
 
global errdata 
MCAG 
global mcagarray 

MCDG1b.m 
% Monte Carlo Data Generator part 1 - rplotcross-section 
 
rand('state', sum(100*clock)); 
 
bigrun = []; 
bigmcagarray = []; 
vvar = [40000:3000:70000]; 
 
for i = 1:length(vvar) 
    for j = 1:6 
        bigmcagarray = [bigmcagarray;mcagarray(1),0,vvar(i)]; 
        errdataruns = rand(mcagarray(1),18) - 0.5; 
        errdataruns(:,1:9) = round(0*errdataruns(:,1:9)); 
        errdataruns(:,10:18) = round(vvar(i)*errdataruns(:,10:18)); 
        bigrun = [bigrun;errdataruns]; 
    end 
end 
 
dlmwrite('c:\\pyshell\\scripts\\LISA\\runs.tsp',bigrun,'-append') 
dlmwrite('c:\\data\\temp\\batchruns.tsp',bigrun,'-append') 
dlmwrite('c:\\data\\temp\\batchv.tsp',bigmcagarray,'-append') 

MCDG25yrb.m 
%modified from rplotcross-section 
 
bigmcagarray = load('c:\\data\\temp\\batchv.tsp'); 
bigrun = load('c:\\data\\temp\\batchruns.tsp'); 
mcagarray(3) = 0; 
[m,n] = size(bigmcagarray); 
for amyers = 1:m 
    mcagarray = bigmcagarray(amyers,:); 
    errdataruns = bigrun(1+50*(amyers-1):50+50*(amyers-1),:); 
    MCDG2LRA5yrb 
    disp('------------') 
    disp(['Run ' num2str(amyers) ' of ' num2str(m) ' complete.']) 
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    disp('------------') 
end 
clear errdataruns 
clear varray 
clear bigrun 
delete('c:\\data\\temp\\batchv.tsp'); 
delete('c:\\data\\temp\\batchruns.tsp'); 

MCDG2LRA5yrb.m 
%Monte Carlo Data Generator part 2 modified for rplotcross-section 
 
PooSraw = []; 
 
for i = 1:mcagarray(1) 
    errdata = errdataruns(i,:); 
     
        fn = datafilename(errdata); 
        sc1 = dlmread(fn.sc1,','); 
        sc2 = dlmread(fn.sc2,','); 
        sc3 = dlmread(fn.sc3,','); 
        magsc = FormAnal(sc1,sc2,sc3); 
        legrateanalyzer5yr 
        currentrun = ['LRA_' md5(CurRunVar(errdata)) ' - ' 
num2str(amyers) ' - ' num2str(i)]; 
        disp(currentrun) 
   
    data.pulsestart12 = pulsestart12; 
    data.pulseend12 = pulseend12; 
    data.pulsestart13 = pulsestart13; 
    data.pulseend13 = pulseend13; 
    data.pulsestart23 = pulsestart23; 
    data.pulseend23 = pulseend23; 
    data.spikes12 = spikes12; 
    data.spikes13 = spikes13; 
    data.spikes23 = spikes23; 
     
    binarray12 = zeros(1,1827); 
    binarray13 = zeros(1,1827); 
    binarray23 = zeros(1,1827); 
    for i = 1:length(data.pulsestart12) 
        binarray12(data.pulsestart12(i):data.pulseend12(i)) = 1; 
    end 
    for i = 1:length(data.pulsestart13) 
        binarray13(data.pulsestart13(i):data.pulseend13(i)) = 1; 
    end 
    for i = 1:length(data.pulsestart23) 
        binarray23(data.pulsestart23(i):data.pulseend23(i)) = 1; 
    end 
     
    PooSraw = [PooSraw,sum((binarray12 | binarray13) | binarray23) / 
1827]; 
     
end 
 
PooSmean = mean(PooSraw); 
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PooSstd = std(PooSraw); 
PooSmax = max(PooSraw); 
PooSmin = min(PooSraw); 
 
PooSdata = LRAPooSLoad5yrb(mcagarray); 
 
if isempty(PooSdata) 
    PooSdata.mean = PooSmean; 
    PooSdata.std = PooSstd; 
    PooSdata.max = PooSmax; 
    PooSdata.min = PooSmin; 
else 
    PooSdata.mean = [PooSdata.mean,PooSmean]; 
    PooSdata.std = [PooSdata.std,PooSstd]; 
    PooSdata.max = [PooSdata.max,PooSmax]; 
    PooSdata.min = [PooSdata.min,PooSmin]; 
end 
LRAPooSSave5yrb 

LRAPooSLoad5yrb.m 
function [data] = LRAPooSLoad(mcagarray) 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
load([dbdir 'LRAPooS5yr.mat']); 
nstr = ['n_' num2str(mcagarray(1))]; 
pstr = ['p_' num2str(mcagarray(2))]; 
vstr = ['v_' num2str(mcagarray(3))]; 
 
if isfield(LRAPooSData, nstr) & isfield(LRAPooSData.(nstr), pstr) & 
isfield(LRAPooSData.(nstr).(pstr), vstr) 
    data = LRAPooSData.(nstr).(pstr).(vstr); 
else 
    data = []; 
end 

LRAPooSSave5yrb.m 
%LRAPooSSave 
 
dbdir = 'c:\\data\\LRAdb\\'; 
 
load([dbdir 'LRAPooS5yr.mat']); 
nstr = ['n_' num2str(mcagarray(1))]; 
pstr = ['p_' num2str(mcagarray(2))]; 
vstr = ['v_' num2str(mcagarray(3))]; 
 
LRAPooSData.(nstr).(pstr).(vstr) = PooSdata; 
save([dbdir 'LRAPooS5yr.mat'],'LRAPooSData'); 

rplotcs.m 
%rplotcs - creates the actual rainplotcross-section 
 
dbdir = 'c:\\data\\LRAdb\\'; 
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load([dbdir 'LRAPooS5yr.mat']); 
varray = fieldnames(LRAPooSData.n_50.p_0); 
z = []; 
zraw = []; 
v = []; 
vraw = []; 
zverge = []; 
zbuff = []; 
 
for j = 1:length(varray) 
    vcurr = char(varray(j)); 
    vcurrnum = str2num(vcurr(3:length(vcurr))); 
    z = [z, mean(LRAPooSData.n_50.p_0.(vcurr).mean)]; 
    zraw = [zraw,LRAPooSData.n_50.p_0.(vcurr).mean]; 
    vraw = 
[vraw,vcurrnum.*ones(1,length(LRAPooSData.n_50.p_0.(vcurr).mean))]; 
    for k = 1:length(LRAPooSData.n_50.p_0.(vcurr).mean) 
        zbuff = [zbuff;mean(LRAPooSData.n_50.p_0.(vcurr).mean(1:k))]; 
    end 
%    zverge = [zverge,zbuff]; 
    zbuff = []; 
    n = length(LRAPooSData.n_50.p_0.(vcurr).max); 
    v = [v,vcurrnum]; 
end 
 
plot(v,z,'-k',vraw,zraw,'xk') 
xlabel('V Error (\mum/sec)') 
ylabel('Mean Normalized Time Out of Spec') 
title('Leg Rate Rainplot Cross Section (P=0)') 
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